2.9 ml commands
20210420 A MLHub package can expose any number of commands. The commands command will list the commands supported by the package.
It is expected that for the same functionality different packages will use the same command name. Package developers may like to conform to the names suggested here:
$ ml adult pkg <file.jpg> # Does image contain questionable material.
$ ml analyze pkg <file.jpg> # Analyze an image.
$ ml arules pkg <file.csv> # Association rule analysis.
$ ml brands pkg
$ ml build pkg # Build with user supplied data/parameters.
$ ml category pkg
$ ml celebrities pkg
$ ml color pkg <file.jpg> # Colorize a (black and white) photo.
$ ml describe pkg
$ ml diagnose pkg <file.jpg> # Diagnose the image, perhaps for disease.
$ ml faces pkg
$ ml geocode pkg
$ ml identify pkg <file.png> # Identify onjects in a photo.
$ ml itemsets pkg <file.csv> # Frequent itemsets for basket analysis.
$ ml landmarks pkg
$ ml language pkg
$ ml limits pkg # Report on any limits to the package.
$ ml links pkg
$ ml normalise pkg <file.csv> # Normalise the numeric data, per column.
$ ml objects pkg
$ ml ocr pkg <file.jpg> # Optical character recognition.
$ ml phrases pkg
$ ml predict pkg <file.csv> # Apply a model to new data to predict/classify/...
$ ml sentiment pkg <sentences> # Sentiment of a sentence.
$ ml supported pkg # What the package supports. E.g., languages.
$ ml synthesize pkg <file.wav> # Synthesize speech from text.
$ ml tags pkg
$ ml thumbnail pkg <file.png> # Create an effective thumbnail for the image.
$ ml train pkg <file.csv> # Train a model from user supplied data/parameters.
$ ml transcribe pkg # Transcribe audio from the microphone.
$ ml translate pkg <text> # Translate between languages.
$ ml type pkg
Most commands also support command line options which always begin with a single dash for a single letter command line option or a double dash for more explicit commands. Command line options tend to be common across different packages and include:
$ ml command pkg [options] [argument]
-a --alpha-matting Perform alpha matting image processing.
-a --annotate Annotate the supplied image to new file.
-b --bing Generate Bing Maps URL.
-c --confidence=<real> Minimum confidence threshold.
-g --google Generate Google Maps URL.
-h --header Output a header line for the CSV.
--help Show usage message.
-i <file.txt> --input=<file.txt> Input data.
--id=<column> A column that represents the identifier.
-j --jpeg Output a jpg file.
-l <lang> --lang=<lang> Target language.
-m <int> --max=<int> Maximum number of matches.
-m <model> --model=<model> Select a specific pre-built model.
-m <mov.mp4> --movie=<mov.mp4> Load/save a movie file.
-o <file.wav> --output=<file.wav> Save audio (or other type) to file.
-o <model.csv> --output=<model.csv> Filename of the CSV file to save model, or to STDOUT.
--osm Generate Open Street Map URL.
-s --support=<real> Minimum support threshold.
-t <lang> --to=<lang> The code for target language, e.g., fr.
-u --url Generate Open Street Map URL.
-v --verbose More information is output.
-v --view View images or movie.
-v --voice=<voice> Selected voice.
-V --version MLHub or package version.
-y --yes Answer yes to any questions.
Your donation will support ongoing availability and give you access to the PDF version of this book. Desktop Survival Guides include Data Science, GNU/Linux, and MLHub. Books available on Amazon include Data Mining with Rattle and Essentials of Data Science. Popular open source software includes rattle, wajig, and mlhub. Hosted by Togaware, a pioneer of free and open source software since 1984. Copyright © 1995-2022 Graham.Williams@togaware.com Creative Commons Attribution-ShareAlike 4.0
